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Abstract. As data become scientific capital, digital libraries of data become 
more valuable. To build good tools and services, it is necessary to understand 
scientists’ data practices. We report on an exploratory study of habitat 
ecologists and other participants in the Center for Embedded Networked 
Sensing. These scientists are more willing to share data already published than 
data that they plan to publish, and are more willing to share data from 
instruments than hand-collected data. Policy issues include responsibility to 
provide clean and reliable data, concerns for liability and misappropriation of 
data, ways to handle sensitive data about human subjects arising from technical 
studies, control of data, and rights of authorship. We address the implications of 
these findings for tools and architecture in support of digital data libraries. 

1   Introduction 

The emerging cyberinfrastructure is intended to facilitate distributed, information-
intensive, data-intensive, collaborative research [1]. Digital libraries are essential to 
the cyberinfrastructure effort. As scholarship in all fields becomes more data-
intensive and collaborative, the ability to share data becomes ever more essential [2, 
3]. Data increasingly are seen as research products in themselves, and as valuable 
forms of scientific capital [4]. “Big science” fields such as physics, chemistry, and 
seismology already are experiencing the “data deluge” [5, 6]. Data repositories and 
associated standards exist for many of these fields, including astronomy, geosciences, 
seismology, and bioinformatics [7-10]. “Little science” fields such as habitat ecology 
are facing an impending data deluge as they deploy instrumented methods such as 
sensor networks. Progress toward repositories and information standards for these 
fields is much less mature, and the need is becoming urgent. 

2   Research Domain 

We have a unique opportunity to study scientific data practices and to construct 
digital library architecture to support the use and reuse of research data. The Center 
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for Embedded Networked Sensing (CENS), a National Science Foundation Science 
and Technology Center based at UCLA, conducts collaborative research among 
scientists, technologists, and educators. CENS’ goals are to develop, and to 
implement in diverse contexts, innovative wireless sensor networks. CENS’ scientists 
are investigating fundamental properties of these systems, designing and deploying 
new technologies, and exploring novel scientific and educational applications.  

CENS’ research crosses four primary scientific areas: habitat ecology, marine 
microbiology, seismology, and environmental contaminant transport, plus 
applications in urban settings and in the arts. The research reported here addresses the 
use of embedded networked sensor technology in biocomplexity and habitat 
monitoring, supplemented by findings about data sharing from other CENS’ areas. In 
these scientific areas, the goals are to develop robust technologies that will operate in 
uncontrolled natural settings and in agricultural settings. The science is based on in 
situ monitoring, with the goal of revealing patterns and phenomena that were not 
previously observable. While the initial framework for CENS was based on 
autonomous networks, early results revealed the difficulty of specifying field 
requirements in advance well enough to operate systems remotely.  Thus we have 
moved toward more “human in the loop” models where investigators can adjust 
monitoring conditions in real time.  

3   Background 

3.1   Data Digital Libraries and the Data Deluge 

Science is a technical practice and a social practice [11]. It is the interaction between 
technological and social aspects of scientific research that underlies the design 
challenge. Modern science is distinguished by the extent to which its products rely on 
the generation, dissemination, and analysis of data. These practices are themselves 
distinguished by their massive scale and global dispersion. New technologies for data 
collection are leading to data production at rates that exceed scientists’ abilities to 
analyze, interpret, and draw conclusions. No respite from this data deluge is foreseen; 
rather, the rate at which data are generated is expected to increase with the 
advancement of instrumentation [5]. Consequently, scientists urgently require 
assistance to identify and select data for current use and to preserve and curate data 
over the long term. Data resources are dispersed globally, due to more international 
collaboration and distributed access to computing resources for analyzing data. 
Cyberinfrastructure is expected to provide capabilities to (i) generate scientific data in 
consistent formats that can be managed with appropriate tools; (ii) identify and 
extract—from vast, globally distributed repositories—those data that are relevant to 
their particular projects; (iii) analyze those data using globally distributed 
computational resources; (iv) generate and disseminate visualizations of the results of 
such analyses; and (v) preserve and curate data for future reuse. An effective 
cyberinfrastructure is one that provides distributed communities-- scientific and 
nonscientific--with persistent access to distributed data and software routinely, 
transparently, securely, and permanently. 
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3.2   Data Management Practices 

The willingness to use the data of others may be a predictor of willingness to share 
one’s own data. Scholars in fields that replicate experiments or that draw heavily on 
observational data (e.g., meteorological, astronomical records) appear more likely to 
contribute data for mutual benefit within their fields. Conversely, scholars in many 
fields work only with data they have produced. The graph or table that results from 
analyzing the data may be the essential product of a study. Many scholars assume that 
the underlying data are not of value beyond that study or that research group. Heads 
of small labs often have difficulty reconstructing datasets or analyses done by prior 
lab members, as each person used his or her own methods of data capture and 
analysis. Local description methods are common in fields such as environmental 
studies where data types and variables may vary widely by study [12, 13]. 

The degree of instrumentation of data collection also appears to be a factor in data 
sharing. Sharing expensive equipment is among the main drivers for collaboration, 
especially in fields such as physics and chemistry. In these cases, collaboration, 
instrumentation, and data sharing are likely to be correlated. The relationship between 
instrumentation and data sharing may be more general, however. A small but detailed 
study conducted at one research university found that scholars whose data collection 
and analysis were most automated were the most likely to share raw data and 
analyses; these also tended to be the larger research groups. When data production 
was automated but other preparation was labor-intensive, scholars were less likely to 
share data. Those whose data collection and analysis were the least automated and 
most labor-intensive were most likely to guard their data. These behaviors held across 
disciplines; they were not specific to science [14]. 

3.3   Habitat Ecology Data and Practices 

The study of biodiversity and ecosystems is a complex and interdisciplinary domain 
[15]. The mechanisms used to collect and store biological data are almost as varied as 
the natural world those data document. Over the last thirty years, data management 
systems for ecological research have evolved out of large projects such as the 
International Biological Program (IBP; established in 1964 by the International 
Council of Scientific Unions), the Man and the Biosphere program (MAB; 
established in 1971 by the United Nations), and the U.S. Long-Term Ecological 
Research program (LTER; established in 1980 by the National Science Foundation) 
[16]. These systems need to support multiple data types (numerical measurements, 
text, images, sound and video), and to interact with other systems that manage 
geographical, meteorological, geological, chemical, and physical data. Currently one 
of the biggest challenges to the development of effective data management systems in 
habitat ecology is the “datadiversity” that accompanies biodiversity [17]. 

The Knowledge Network for Biocomplexity (KNB) [http://knb.ecoinformatics.org/], 
an NSF-funded project whose first products became available in 2001, is a significant 
development for data management in habitat ecology. KNB tools include a data 
management system for ecologists, based on the Morpho client software and Metacat 
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server software, and a standard format for the documentation of ecological data—the 
Ecological Metadata Language (EML). SensorML is an equally important development 
for sensor data [18]. 

4   Research Problem 

While practices associated with scholarly publication vary widely between fields, the 
resulting journal articles, papers, reports, and books can be described consistently with 
bibliographic metadata. Data are far more problematic. Disciplines vary not only in their 
choice of research methods and instruments, but the data gathered may vary in form and 
structure by individual scholar and by individual experiment or study. Multidisciplinary 
collaboration, which is among the great promises of cyberinfrastructure, will depend 
heavily on the ability to share data within and between fields. However, very little is yet 
known about practices associated with the collection, management, and sharing of data. 
Despite these limitations, immediate needs exist to construct systems to capture and 
manage scientific data for local and shared use. These systems need to be based on an 
understanding of the practices and requirements of scientists if they are to be useful and 
to be used. 

Habitat ecology is a “small science,” characterized by small research teams and 
local projects. Aggregating research results from multiple projects and multiple sites 
has the potential to advance the environmental sciences significantly. The choice of 
research problems and methods in environmental research were greatly influenced by 
the introduction of remote sensing (satellite) technology in the 1980s and 1990s [19]. 
Thus one of our research concerns is how habitat ecology may evolve with the use of 
embedded networked sensing. These scientists are deploying dense sensor networks 
in field locations to pursue research on topics such as plant growth, bird behavior, and 
micrometeorological variations. 

Our research questions address the initial stages of the data life cycle in which  
data are captured, and subsequent stages in which the data are cleaned, analyzed, 
published, curated, and made accessible. The questions can be categorized as  
follows: 

•  Data characteristics: What data are being generated? To whom are these data? To 
whom are these data useful? 

•  Data sharing: When will scientists share data? With whom will they share data? 
What are the criteria for sharing? Who can authorize sharing? 

•  Data policy: What are fair policies for providing access to these data? What 
controls, embargoes, usage constraints, or other limitations are needed to assure 
fairness of access and use? What data publication models are appropriate?  

•  Data architecture: What data tools are needed at the time of research design? 
What tools are needed for data collection and acquisition? What tools are needed 
for data analysis? What tools are needed for publishing data? What data models do 
the scientists who generate the data need? What data models do others need to use 
the data? 
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5   Research Method 

5.1   Data Sources 

Our goal is to understand data practices and functional requirements for CENS 
ecology and environmental engineering researchers with respect to architecture and 
policy, and to identify where architecture meets policy. The results reported here are 
drawn from multiple sources over a three-year period (2002-2005). In the first year 
(2002-2003), we sat in on team meetings across CENS scientific activities and we 
inventoried data standards for each area [20]. In year 2 (2003-4), we interviewed 
individual scientists and teams and continued to inventory metadata standards. We 
used the results of the first two years to design an ethnographic study of habitat 
biologists, conducted in year 3 (2004-05). In the current year (2005-6), we are 
interviewing individual members of habitat ecology research teams, including 
scientists, their technology research partners in computer science and engineering, 
and graduate students, postdoctoral fellows, and research staff. 

5.2   Process 

The ethnographic work from the first three years of the study (interviewing teams and 
individuals, participating in working groups, etc.) is documented in notes, internal 
memoranda, and a white paper [20]. We did not audiotape or videotape these 
meetings to avoid interfering with the local activities. Knowledge from this part of the 
research was used to identify data standards relevant to the research areas. We shared 
our results with individuals and teams to get feedback on the relevance of these 
standards. We also constructed prototypes of data analysis and management tools as 
components of the educational aspects of our research [21]. Thus we are conducting 
iterative research, design, and development for data management tools in CENS. 

5.3   Participants 

Our population at CENS is comprised of about 70 faculty and other researchers, a 
varying number of post-doctoral researchers, and many student researchers. About 50 
scientists, computer scientists, engineering faculty, and their graduate students, post-
doctoral fellows, and research staff are working in the area of habitat ecology. The 
data reported here are drawn primarily from in-depth interviews of two participants, 
each two to three hours over two to three sessions. The direct quotes are from these 
interviews. Results from one-hour interviews with two other scientists and from a 
large group meeting (about 20 people) to discuss data sharing policy also are reported 
here. These results are informed by interviews, team meetings, and other background 
research conducted in earlier stages of our data management studies. 

5.4   Analysis 

We used the results of interviews and documentary analyses in the first two years of 
our research to design the ethnographic study. This study used the methods of 
grounded theory [22]. The interview questions are based on Activity Theory [23-25], 
which analyzes communities and their evolution as “activity systems.” Activity 
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systems are defined by the shared purposes that organize a community and by the 
ways in which joint activity to achieve these purposes is mediated by shared tools, 
rules for behavior, and divisions of labor. When analyzing how activity systems 
change and develop, the focus is on contradictions that occur within the system or as a 
result of the system interacting with other activity systems. These contradictions are 
analyzed as the engine for organizational change. 

Based on this theoretical framework, we developed interview questions about 
participants’ motives, understanding of their community’s motives, tools used in daily 
work, ways they divided labor, power relations within their community, and rules and 
norms for the community. Interviews were then fully transcribed. In the initial phase 
of analysis we looked at the first interviews with participants for emergent themes. 
The analysis progressed iteratively. Subsequent interviews were analyzed with an eye 
towards testing and further refining the themes identified in the initial coding. With 
each refinement, the remaining corpus was searched for confirming or contradictory 
evidence. At this stage, however, the work is still preliminary. As such, no formal 
coding schemes were developed that were systematically applied to the entire corpus. 
Rather, what we present below are the emergent themes and representative 
illustrations in the participants’ own words.  

6   Results 

In the first two years of study, we learned that CENS’ habitat biologists perceived a 
lack of established standards for managing sensor data, specifically those that support 
the sharing of data among colleagues. They are eager to work with us because they 
need tools to capture, manage, and share sensor data more effectively, efficiently, and 
easily. They are committed to participation of developing domain data repositories 
and standards such as the Knowledge Network for Biocomplexity and Ecological 
Metadata Language, but are not yet implementing them. A good starting point for 
exploring the metadata requirements of this community is to assess scientists’ 
experiences with implementing these tools and standards, and to evaluate those tools’ 
utility.  The results are organized by the research questions outlined above: Data 
characteristics, data sharing, data policy, and data architecture. 

6.1   Data Characteristics 

Our interview questions explored what data are being generated, to whom are these 
data, and to whom are they useful. CENS is a collaboration between technologists and 
scientists, thus the technologies are being evaluated and field tested concurrently with 
the scientific data collection. The scientists interviewed reported unreliability of the 
sensors. In the early stages, one researcher found that he was losing about 25% of 
every transmission from every sensor, for example. While the sensors were sending 
data every five minutes, they only produced usable data every 10 or 15 minutes. Thus 
they could not always trust what they were getting from the instruments: 

I’m highly suspicious [of automated data collection]. I mean it works, but 
then sometimes it doesn’t, and then sometimes weird things happen. You get 
a glitch, and then you start getting the same value twice or something. … 
when you do averages, it’s all funny. 
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These researchers have a story in mind when they design a field experiment. They 
also know about how much data they will need to support that story in a published 
paper in their discipline. One of our scientists explicitly told us that 

… to tell that story I’m going to need an average of five figures and a table.  

He sketches out mock figures on paper as part of his research design. We were 
particularly intrigued by his notion of “least publishable unit” – in this case, five 
figures and a table. However, he also told us that he tends to collect more data so that 
he can elaborate on his story:  

I collect another data set just to round it out rather than [picking] an 
interesting sub-phenomenon of another sub-phenomenon. That’s boring. 

Thus his research design is based on the amount of data he needs to tell a story of this 
scope and form. The publication is the product of the study, rather than the data per se. 

6.2   Data Sharing 

We collected some useful commentary on issues of what data scientists will share, 
when, with whom, and with what criteria. Within this small sample, scientists 
generally are more willing to share data that already have been published and less 
willing to share data that they plan to publish.  The latter type of data represent claims 
for their research.  

Sharing data- if it’s already published?  It’s your data, no problem. I can 
give that to [you]. If it’s something I’m working on to get published or 
somebody else is working on to get published, or if they want to publish the 
paper together, it gets a little bit funnier. 

For this scientist, willingness to share also is influenced by the effort required to 
collect the data. His hand-collected data are more precious than his instrument-
generated data:  

… if you walk out into a swamp .. out in this wacky eel grass, and marsh 
along with your hip-waders and [are] attacked by alligators ..and then you 
do it again and again and again... I don’t [want to] share that right away. I 
[want to] analyze it because I feel like it’s mine. 

The above dataset was seen as “hard won.” When they do share experimental data 
with collaborators, they feel an ethical and scientific responsibility to clean the dataset 
sufficiently that it has scientific value. Raw data is meaningless to others. Unless the 
data are useful and relevant, they would be “just taking up space and nobody’s going 
to be able to use [them].” 

If they feel they are forced to share data they will, knowing that it may not be of 
much use to others. One scientist told us if someone wants his data, he or she can 
have it in the raw form. His Excel spreadsheets are cryptic and exist in multiple 
versions, representing each transformation. 

Conversely, we found less evidence of proprietary ownership over reference data 
that provides context, but is not specifically relevant to their research questions. One 
scientist gave the example of measuring the density of shade cloth for a field 
experiment. Much work went into determining the amount of shade a particular type 
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of cloth provided in a 24-hour period. He was happy to save other people the effort of 
reconstructing that number. Similarly, our subjects usually are willing to share 
software and other tools.  

Several of the researchers interviewed did not think their data would be of much 
use to other researchers. Conversely, some said the data they are collecting already is 
being shared between themselves and statisticians, engineers, and computer scientists, 
all with different purposes for the data. One of our subjects recognized the possible 
uses of his data on water contaminants in a river confluence for such diverse fields as 
fluid mechanics, public health, ichthyology, and agriculture. 

6.3   Data Policy 

We encountered a particularly enlightening scenario in which questions arose of whether 
the data from an instrument belonged to the designers of the instrument or the designers 
of the experiment. The team member (engineering faculty) who designed and installed 
the instrument had plans for using the data from the instrument but did not implement 
those plans. After several years of data production, one of the scientists found the data 
useful for his own research, and asked the head of the research site for permission to use 
the data in a publication. Given that no other claims were being made on the data, and 
that these data were being posted openly on the website of the research site, permission 
was granted. After some investment in cleaning and analysis, the data looked promising 
for publication, so the scientist and site director invited the instrument designer to 
participate in the publication. However, the designer objected strongly on the grounds 
that they were his data because he had deployed the instrument. The situation was 
complicated further by the existence of a pending grant proposal involving this 
instrument by the same designer. We learned later that the situation was resolved only 
when the pending grant was not awarded, relieving some of the proprietary tension. The 
scientist we interviewed commented that this was the first real intellectual property issue 
over data that he had encountered. 

In the above case, the technology people are faculty partners in the research. Yet 
they view the status of the data and the control over it rather differently. Authorship 
credit on publications is a common issue in research. In cases where instrumentation 
is essential to the data collection, questions sometimes arise as to whether technical 
support people should be authors. In another interview, the scientist who provided the 
above example commented that 

... tech-support people might get an acknowledgement ... but they’re not co-
authors on a scientific paper. 

The two situations described here are distinctly different. In the former, the 
technologist was a researcher who had deployed the instrument, and all agreed that he 
was entitled to some form of authorship credit. The issue appeared to be about who 
had priority over the data in determining what should be published, when, and by 
whom. In the latter situation, a scientist is referring to people who assist with 
equipment but are not themselves researchers. However, situations may arise where 
the distinction between technical research and technical assistance is not clear.  

In the group meeting (about 20 CENS faculty, students, and research staff) to 
discuss the ethics and policy of data sharing, several interesting issues arose. One 
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frequent question was about the condition of data to be shared. The group generally 
agreed that those generating the data had responsibility to assure that the data were 
reliable and were verified before sharing or posting. Most participants were aware of 
NSF rules for sharing the data from funded research. At the same time, they were 
concerned about premature release prior to publication, and whether any sort of 
liability disclaimers or rights disclaimers (e.g., Creative Commons licenses for 
attribution and non-commercial reuse) should be applied. 

Several of the meeting participants were involved in a small project involving cameras 
triggered by sensors. The purpose of the project was to test the sensors, but capturing 
identifiable data on individuals might be unavoidable. They were very concerned about 
privacy and security issues with these data. Because the study was not about human 
subjects, they had not sought human subjects review. Several people analogized the 
situation to webcams on university campuses. Images of people are streaming to public 
websites without the knowledge or permission of those involved. They also discussed 
technical solutions such as anonymizing faces captured by the cameras.  

6.4   Data Architecture 

A longer term goal of our research is to design tools to support data acquisition, 
management, and archiving. A number of questions addressed the use of data and 
tools at each stage in the life cycle. 

6.4.1   Research Design and Hypothesis Testing 
Field research in habitat ecology begins with identifying a research site in which the 
phenomena of interest can be studied. Before scientists begin setting up sensors or 
deciding which extant sensors might produce data of interest, they would like a map 
of the research site that includes the location of sensors and the types of data that each 
sensor could produce. For example, this scientist would like a map of the area and a 
table of the data from each set of sensors: 

I want a table that I can skim really easily and say Okay of these ten stations 
how many of them have temperature data available? I don’t want to look 
around on a map and have to click on each link  

Scientists spend much time on activities such as sensor placement and development 
prior to fieldwork. They test equipment and sample the quality of observations from 
the sensors before they start doing any real science. Thus tools for this exploratory 
phase are desirable.  

6.4.2   Data Collection and Acquisition 
Due largely to the relative immaturity of the sensor technology, several of our science 
subjects were suspicious of automated data collection. They expressed reluctance to 
take data streams straight from the sensors without good tools to assess the cleanliness 
of the data. They want simple and transparent methods to find potential gaps in the 
data; also desirable are tools to identify when values are duplicated or missing, when 
sensors are failing, and other anomalous situations.  

Some also expressed the need to annotate the data in the field, which would 
provide essential context that cannot be anticipated in data models. For example, data 
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collection tools can have default menus for the available data elements generated by 
any particular sensor. What they cannot do in advance is predict how scientists will 
modify the instruments or the field conditions. One scientist mentioned moving his 
equipment to a different location to compare temperatures. Documenting which data 
were collected at which location and when is essential to later interpretation. Another 
good example is distinguishing between common instruments with known 
characteristics and one that was hand-made. Another scientist might use the same off-
the-shelf instrument for another experiment, enabling easy comparisons. If the 
instrument were unique, the results may be much more difficult to interpret. The 
scientist might calibrate the two instruments and find they could be used 
interchangeably, but the future user of the data needs to know what instruments were 
used and how. The example here is  

air temperature [from] a little therma-couple that I stuck one foot off the 
ground with a little aluminum shield that I made. Someone else might use [a 
common purchased instrument] interchangeably, but they should know that 
one of them was my home-built little therma-couple thing. 

6.4.3   Data Analysis 
Cleaning. The two scientists in the ethnographic study would extract data from the 
sensor network database to perform any correlations. They prefer to use graphing 
programs with which they are most familiar. One scientist was disinterested in the 
offer of graphing tools or visualizations, because he was reluctant to trust other 
people’s graphs. He wants his own graphs so that he can make his own correlations. 
He also wants the data in a form that he can import into his preferred analysis 
programs. Data are cleaned with respect to specific research questions. If data are 
extraneous to a current paper, they may not be cleaned or analyzed. Thus the datasets 
resulting from a field project are not necessarily complete.  

Version Control. Even when scientists are willing to share archived data, those data 
may be poorly labeled, rendering them difficult to use. Multiple versions may exist of 
the same data set, resulting from different cleaning or analysis processes. Most of 
these processes are not recorded, making the data even less accessible to the potential 
consumer. Multiple versions of datasets complicate retrieval for the scientists who 
created them and for future researchers who may want to use them. One of our 
researchers acknowledged that each person on the team created his or her own Excel 
spreadsheets, and the only access to the data of their teammates was to ask for the 
spreadsheets and explanations of their contents. This scientist worried that when any 
of her team members left the project, their data essentially would be lost. 

Tools. In these interviews, and in prior interviews and meetings over the last several 
years, we often found that scientists prefer viewing data in tables, especially 
Microsoft Excel spreadsheets. One scientist in the ethnographic study offered a 
detailed explanation.  Columns and tables enable him to identify holes in data and to 
determine how to clean them. Graphs and plots show different types of data 
inconsistencies, such as identifying dead sensors or graphics in the wrong time scale. 
Graphs are also personal, because scientists reduce data to test their own hypotheses.  
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These scientists do not appear to trust transformations made by others; they are 
more likely to apply their own tools and methods to the original data. The scientist 
noted above would trust fellow biologists to clean the data: 

I want some radiation measurements ... you can do energy budget 
calculations that … have to be cleaned up by a biologist in order to get 
incorporated into the data set.. any old biologist can come by and start 
doing correlations, because they know what the data is... 

7   Discussion and Conclusions 

While the number of interviews reported in this study is small, the results are based 
on four years of work with these scientists and technology researchers. Collaborative 
work can be much slower than solo work due to the effort involved in learning a 
common language and in finding common ground in research interests [26]. The 
investments pay off in new insights and new approaches. CENS collaborations 
between scientists and technologists did not lead to new forms of science as quickly 
as expected. In its fourth year of existence, the Center is now deploying networked 
sensor technologies for multiple scientific studies. The promised payoffs are 
beginning to accelerate. Many of the problems with data cleaning and sensor 
reliability are due to the immature stage of the instruments and networks. As these 
scientists become more experienced with these technologies, they are likely to 
experiment with more instruments and configurations, so the data cleaning and 
calibration issues will not go away. Experience also is likely to make them more 
discriminating consumers of the technology, making yet greater demands on the 
technology researchers. 

Scholarly publications have been the product of science for several centuries. 
Viewing data as a product per se is a relatively new idea. The scientists that we 
interviewed for this study continue to focus on the paper as their primary product, 
designing their experiments accordingly. Whether the data will become a direct 
product of their research to be reused and shared is one of our continuing research 
questions. 

Our tentative findings about data sharing are consonant with other research:  In this 
small sample, our scientists are more willing to share data already published than data 
that they plan to publish [27]. One scientist was explicit about guarding hand-collected 
data more closely than data from sensor networks [14].  Our subjects expressed 
responsibility to assure that any shared data are documented sufficiently to be 
interpreted correctly [27]. If required to share data they will, knowing that raw data are 
of little value to others without sufficient cleaning and documentation.  However, given 
a choice, most prefer to exploit their research data fully before releasing them to others. 

A number of interesting policy issues arose that we are now studying in much more 
depth. The Center has made a commitment to share its data with the community and 
is seeking ways to do so. Members want to provide clean and reliable data, but are 
understandably concerned about liability and misappropriation of data. Among the 
questions to address are how to handle sensitive data about human subjects that arises 
from technical studies, who controls data from a project, and who has first rights to 
authorship. These are common issues in collaboration, especially at the boundaries 
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between fields. The boundary between life sciences, such as habitat biology, and 
technology may be even more complex.  Not only do differences in data practices  
between these domains arise, but the distinction between technical research and 
technical assistance may not always be clear.  

These findings have some promising implications for architecture and tools for 
data management in habitat ecology and perhaps to other field research disciplines. 
One is the need for tools to explore the research site and the availability of extant data 
sources. These are especially valuable in the early design stages of an experiment. 
Visualization tools in the field may be less helpful than expected, as these scientists 
want to get the data into their own, familiar tools. Quick prototyping of data sources 
in the field is an essential requirement, and one already recognized in CENS’ “human 
in the loop” architecture. These scientists wish to add new instruments and new 
details about data and instruments in the field on an ad hoc basis. They invent new 
tools as needed, using aluminum foil, cloth, tape, and other available equipment. They 
want data analysis in the field so that they can adjust experiments in real time.  

Most of the above requirements suggest hand-crafted tools and structures for this 
research community. The longer term goal, however, is to build generalizable, 
scalable tools that facilitate sharing and curation of scientific data. We will continue 
to work with habitat biologists and other CENS scientists to find a balance between 
local and global requirements for tools and architecture. While the study reported here 
relies on a small dataset and is exploratory in nature, it identifies a number of 
important questions for the design of cyberinfrastructure for science. Research to 
pursue these questions in more depth is currently under way. 
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